

SMAD3 Reporter Mouse for Assessing TGF-B/Activin Pathway Activation

Summary

Researchers at the National Cancer Institute (NCI) developed a novel mouse for the detection of TGF-ß signaling. This mouse provides the opportunity to study TGF-ß signaling in vivo and may be a useful model for preclinical pharmacology studies. The NCI seeks licensees for the TGF-ß reporter mouse.

NIH Reference Number

E-136-2019

Product Type

• Research Tools

Keywords

Transforming Growth Factor Beta; TGF-ß; mothers against decapentaplegic homolog 3;
SMAD3; Animal Model; Reporter Mouse; eGFP; Oncology; Cancer; Fibrosis, Wakefield

Collaboration Opportunity

This invention is available for licensing.

Contact

• Jaime Greene NCLTTC

greenejaime@mail.nih.gov (link sends e-mail)

Description of Technology

The Transforming Growth Factor Beta (TGF-ß) ligands (i.e., TGF-ß1, -ß2, -ß3) are key regulatory proteins in animal physiology. Disruption of normal TGF-ß signaling is associated with many diseases from cancer to fibrosis. In mice and humans, TGF-ß activates TGF-ß receptors (e.g., TGFBR1), which activates SMAD proteins that alter gene expression and contribute to tumorigenesis. Reliable animal models are essential for the study of TGF-ß signaling. A previously developed animal model for TGF-ß signaling utilizes a luciferase expression system under the control of SMAD protein responsive promoter elements (Lin et al., 2005, J. Immunol). The luciferase-based reporter mouse requires administering luciferin for bioluminescence detection. Another previously developed model is a SMAD protein-responsive, green fluorescent protein (GFP)-based reporter mouse (Neptune et al., 2003, Nat. Genet.); however, the model is no longer available.

Thus, there remains a need for novel reporter animal models to study TGF-ß signaling.

NCI investigators designed an enhanced GFP (eGFP)-based reporter construct that is more sensitive to SMAD3 activation than other existing reporter constructs. Expression of eGFP is driven by an artificial enhancer element consisting of six repeats of a strong SMAD3 binding element. This reporter was greater than ten times more sensitive in vitro than the CAGA12-based reporter, another commonly used construct to detect TGF-ß signaling. Using CRISPR/Cas9 technology, the inventors knocked this reporter construct into the Rosa26 locus, a ubiquitously expressed gene in most cells of the mouse. This strategy allows identification of tissues and cells in which signaling of TGF-βs are endogenously active during normal development, tissue homeostasis, and disease.

The mouse model is currently undergoing further validation using genetic and pharmacological approaches. It is available for licensing.

Potential Commercial Applications

- Development of oncology therapeutics
- Developing of fibrosis therapeutics
- Pre-clinical in vivo model to study TGF-β signaling and pathway antagonists
- Pre-clinical model for TGF-β/SMAD3 disease states

Competitive Advantages

- · No requirement for luciferin injections
- Higher sensitivity for SMAD3 activation than other reporters

Inventor(s)

Lalage Wakefield DPhil (NCI), Yuan Yang PhD (NCI), Sushil Rane PhD (NIDDH), Caroline Hill PhD

Development Stage

• Pre-clinical (in vivo)

Publications

Yang Y, et al. A new TGF-ß pathway reporter mouse for analysis of TGF-β signaling in normal homeostasis and cancer. [(DOI 10.1158/1538-7445.AM2020-1645)]

Patent Status

• Research Material: NIH will not pursue patent prosecution for this technology

Therapeutic Area

- Cancer/Neoplasm
- Immune System and Inflammation
- Cardiovascular Systems
- Metabolic Disease
- Central Nervous System

Updated

Sunday, September 11, 2022

Source URL:https://techtransfer.cancer.gov/availabletechnologies/e-136-2019